Nombre de la asignatura: **Visión Artificial** Línea de trabajo: Procesamiento Digital de Imágenes y Visión

Tiempo de dedicación del estudiante a las actividades de

DOC - TIS - TPS - Horas totales. Créditos 48-20-100-168-6

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

1. Historial de la asignatura.

Fecha revisión / actualización	Participantes	Observaciones, cambios o justificación
14 de mayo de 2010	Nombres de los participantes Saúl Martínez Díaz	Reestructuración del plan y programas de estudio de la Maestría en Sistemas Computacionales

2. Pre-requisitos y co-requisitos.

Matemáticas Discretas, Análisis y Diseño de Algoritmos.

3. Objetivo de la asignatura.

Conocer y aplicar los conceptos y herramientas para la solución de problemas relacionales con procesamiento de imágenes y visión artificial.

4. Aportación al perfil del graduado.

Analizar, diseñar e implementar algoritmos de procesamiento digital de imágenes para diversas aplicaciones, en el desarrollo de sistemas inteligentes.

5. Contenido temático.

Unidad	Temas	Subtemas
I Introducción	1.1 Introducción1.2 Fundamentos1.3 Relaciones básicas de pixeles	 1.1.1 Problemas 1.1.2 Aplicaciones 1.2.1 Elementos de percepción visual 1.2.2 Representación de imágenes 1.2.3 Muestreo 1.2.4 Cuantización 1.3.1 Vecindades entre pixeles 1.3.2 Conectividad
II Mejora de la imagen	2.1 Procesamiento en el dominio espacial 2.2 Procesamiento en el dominio de la frecuencia	2.1.1 Transformaciones básicas 2.1.2 Procesamiento de histograma

		2.1.3 Filtrado espacial2.2.1 Transformada de Fourier2.2.2 Filtrado en el dominio de la frecuencia
III Segmentación de imágenes.	 3.1 Detección de discontinuidades 3.2 Umbralización 3.3 Segmentación basada en regiones 3.4 Uso de movimiento en la segmentación 	 3.1.1 Detección de puntos 3.1.2 Detección de líneas 3.1.3 Detección de bordes 3.2.1 Umbralización global. 3.2.2 Umbralización adaptativa 3.3.1 Fundamentos 3.3.2 Crecimiento de regiones 3.4.1 Técnicas espaciales 3.4.2 Técnicas en el dominio de la frecuencia
IV Representación y descripción	4.1 Representación4.2 Descriptores de contorno4.3 Descriptores de región	4.1.1 Códigos de cadena 4.1.2 Aproximaciones poligonales 4.1.3 Esqueletos 4.2.1 Descriptores simples 4.2.2 Descriptores de Fourier 4.3.1 Descriptores simples 4.3.2 topológicos 4.3.3 Texturas
V Procesamiento morfológico	5.1 Operaciones básicas5.2 Extensión a escala de grises	5.1.1 Dilatación y erosión 5.1.2 Apertura y cierre 5.1.3 Transformada Hit-Miss 5.2.1 Dilatación y erosión 5.2.2 Apertura y cierre 5.2.3 Aplicaciones

6. Metodología de desarrollo del curso.

Exposición teórica del tema Discusión grupal Solución de ejercicios Realización de prácticas de laboratorio

7. Sugerencias de evaluación.

Exámenes escritos Tareas y prácticas de laboratorio Exposición de artículos Proyecto final

8. Bibliografía y Software de apoyo.

- Digital Image Processing. Rafael C. Gonzalez, Richard E. Woods. Prentice Hall, second edition.
- Digital Image Processing. William K. Pratt. John Wiley and Sons Inc., Third edition.
- Digital Image Processing. Bernd Jahne. Springer, 5th revised and extended edition.
- Image Processing Toolbox. For use with MATLAB. User's Guide. The Math Works Inc., version 2.
- The Image Processing Handbook. John C. Russ. CRC Press.
- Image Processing: Principles and Applications. Tinku Acharya, Ajoy K. Ray. John Wiley and Sons Inc.
- Handbook of Computer Vision Algorithms in Image Algebra. Gerhard X. Ritter; Joseph N. Wilson. CRC Press.
- Computer Vision and Image Processing. A Practical Approach Using CVIPTools.
 Scott E. Umbaugh. Prentice Hall.

Software de apoyo

MATLAB

9. Actividades propuestas.

Unidad	Prácticas
I.	Desarrollar algoritmos básicos de manipulación de imágenes en diferentes formatos
II.	Implementar algoritmos de mejora de imágenes utilizando ecualización de histograma
III.	Implementar filtros para remoción de ruido aditivo
IV.	Desarrollar algoritmo de segmentación de imágenes por crecimiento de regiones
V.	Desarrollar algoritmo de representación de imágenes utilizando descriptores simples